点击上方“Deephub Imba”,关注公众号,好文章不错过 !这篇文章从头实现 LLM-JEPA: Large Language Models Meet Joint Embedding Predictive Architectures。需要说明的是,这里写的是一个简洁的最小化训练脚本,目标是了解 JEPA 的本质:对同一文本创建两个视图,预测被遮蔽片段的嵌入,用表示对齐损失来训练。本文的目标是 ...
Tokens are the fundamental units that LLMs process. Instead of working with raw text (characters or whole words), LLMs convert input text into a sequence of numeric IDs called tokens using a ...
What makes a large language model like Claude, Gemini or ChatGPT capable of producing text that feels so human? It’s a question that fascinates many but remains shrouded in technical complexity. Below ...