Abstract: Recently, topological graphs based on structural or functional connectivity of brain network have been utilized to construct graph neural networks (GNN) for Electroencephalogram (EEG) ...
Abstract: Particle track reconstruction is an important problem in high-energy physics (HEP), necessary to study properties of subatomic particles. Traditional track reconstruction algorithms scale ...
Learn how Network in Network (NiN) architectures work and how to implement them using PyTorch. This tutorial covers the concept, benefits, and step-by-step coding examples to help you build better ...
According to Andrew Ng (@AndrewYNg), DeepLearning.AI has launched the PyTorch for Deep Learning Professional Certificate taught by Laurence Moroney (@lmoroney). This three-course program covers core ...
Alzheimer's Disease (AD), a leading neurodegenerative disorder, presents significant global health challenges. Advances in graph neural networks (GNNs) offer promising tools for analyzing multimodal ...
Graph Neural Networks (GNNs) and GraphRAG don’t “reason”—they navigate complex, open-world financial graphs with traceable, multi-hop evidence. Here’s why BFSI leaders should embrace graph-native AI ...
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.5c01525. Efficiency analysis of different normalization strategies ...
Proceedings of The Eighth Annual Conference on Machine Learning and Systems Graph neural networks (GNNs), an emerging class of machine learning models for graphs, have gained popularity for their ...